
Sourcecode: Example1.c

Sourcecode: Example1.c ii

COLLABORATORS

TITLE :

Sourcecode: Example1.c

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Sourcecode: Example1.c iii

Contents

1 Sourcecode: Example1.c 1

1.1 Example1.c . 1

Sourcecode: Example1.c 1 / 4

Chapter 1

Sourcecode: Example1.c

1.1 Example1.c

/***/
/* */
/* Amiga C Encyclopedia (ACE) Amiga C Club (ACC) */
/* -------------------------- ------------------ */
/* */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Parsing Command Line Tulevagen 22 */
/* File: Example1.c 181 41 LIDINGO */
/* Author: Anders Bjerin SWEDEN */
/* Date: 93-03-06 */
/* Version: 1.0 */
/* */
/* Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/* */
/* Registered members may use this program freely in their */
/* own commercial/noncommercial programs/articles. */
/* */
/***/

/* This example demonstrates how to parse the command line. */
/* Since this is the first example it is relative simple. */
/* The program expects one argument. If no argument is given */
/* will the parse function fail (uses the "/A" - "Always */
/* required" option), and if more than one argument is give */
/* it will also fail (the "/M" - "Multiple argument" option */
/* is not set). */

/* Include the dos library definitions: */
#include <dos/dos.h>

/* Include information about the argument parsing routine: */
#include <dos/rdargs.h>

/* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /* System functions... */

Sourcecode: Example1.c 2 / 4

#include <stdio.h> /* Std functions [printf()...] */
#include <stdlib.h> /* Std functions [exit()...] */

/* Here is our simple command line template. This program expects */
/* one argument. If no argument is given will the parse function */
/* fail since we have set the option "/A" ("Always required"), */
/* and if more than one argument is given it will also fail since */
/* we have not set the "/M" ("Multiple argument") option. */
#define MY_COMMAND_LINE_TEMPLATE "SoundFiles/A"

/* Here is a valid command line: */
/* Example1 Bird.snd */
/* */
/* Here are some incorrect command lines: */
/* Example1 The file name is required! */
/* Example1 Bird.snd River.snd Only one argument may be used! */

/* Only one command template is used: */
#define NUMBER_COMMAND_TEMPLATES 1

/* The command template numbers: (Where the result of each */
/* command template can be found in the "arg_array".) */
#define SOUNDFILE_TEMPLATE 0

/* Set name and version number: */
UBYTE *version = "$VER: AmigaDOS/ParsingCommandLine/Example1 1.0";

/* Declare an external global library pointer to the Dos library: */
extern struct DosLibrary *DOSBase;

/* Declared our own function(s): */

/* Our main function: */
int main(int argc, char *argv[]);

/* Main function: */

int main(int argc, char *argv[])
{

/* Simple loop variable: */
int loop;

/* Pointer to a RDArgs structure which will automatically */
/* be created for us when we use the RDArgs() function: */
struct RDArgs *my_rdargs;

Sourcecode: Example1.c 3 / 4

/* The ReadArgs() function needs an arrya of LONGs where */
/* the result of the command parsing will be placed. One */
/* LONG variable is needed for every command template. */
LONG arg_array[NUMBER_COMMAND_TEMPLATES];

/* Note! This "arg_array" must be cleared (all values set to */
/* zero) before we may use it with the ReadArgs() function. */
/* If we declare this structure outside the main function */
/* all values will automatically be cleared by C, but if we, */
/* as in this example, declare the array inside a function */
/* we have to clear it manually. (If we do not clear it we */
/* can not examine the array and see if a field is set or */
/* not.) */

/* The built in command parsing routine was first */
/* introduced in Release 2. V36 of the dos library */
/* was however rather "buggy", and you should only */
/* use V37 or higher: */
if(DOSBase->dl_lib.lib_Version < 37)
{

/* Too old dos library! */
printf("This program needs Dos Library V37 or higher!\n");

/* Exit with an error code: */
exit(20);

}

/* We will now clear the "arg_array" (set all values to zero): */
for(loop = 0; loop < NUMBER_COMMAND_TEMPLATES; loop++)

arg_array[loop] = 0;

/* Parse the command line: (ReadArgs() will read the command */
/* line and with the help of the command line template set */
/* the corresponding values in the "arg_array" which is used */
/* to store the result of the command parsing. The function */
/* will return a pointer to a RDArgs structure which has */
/* automatically been created for us, since we did not create */
/* one ourself. This structure must be removed with help of */
/* the FreeArgs() function before your program may terminate.) */
my_rdargs =

ReadArgs(MY_COMMAND_LINE_TEMPLATE,
arg_array,
NULL

);

/* Have AmigaDOS successfully parsed our command line? */
if(!my_rdargs)
{

/* The command line could not be parsed! The user probably */
/* forgot to enter an argument which is required. */

Sourcecode: Example1.c 4 / 4

printf("Could not parse the command line!\n");

/* See you later... */
exit(21);

}

/* The comand line has successfully been parsed! */
/* We can now examine the "arg_array": */

/* Print template 1, the file name, which is in this example the */
/* only argument. Since the user must enter this argument, or */
/* else the ReadArgs() function would fail, we actually do not */
/* have to check that there is something in the array. However, */
/* it is easy to remove the "/A" option and forget to add a */
/* check later on, so we better always check that there is */
/* something in the array before we use it (you can’t be too */
/* careful). */
/* */
/* (If the user would not have entered an argument and the "/A" */
/* option was not used, the LONG variable in the array would be */
/* NULL. If the user has entered an argument, which he must have */
/* done in this example since it is required, the LONG variable */
/* in the arraw contains a pointer to a string with the argument */
/* inside.) */
if(arg_array[SOUNDFILE_TEMPLATE])

printf("File name: %s\n", arg_array[SOUNDFILE_TEMPLATE]);

/* Before our program terminates we have to free the data that */
/* have been allocated when we successfully called ReadArgs(): */
FreeArgs(my_rdargs);

/* Please note that any pointers in the "arg_array" which */
/* pointed to some data, for example strings, may not be */
/* used any more after you have called FreeArgs(). The data */
/* (strings etc...) have now been deallocated, and can not */
/* be accessed any more. */

/* "And they lived happily ever after..." */
exit(0);

}

	Sourcecode: Example1.c
	Example1.c

