Sourcecode: Examplei.c

Sourcecode: Examplel.c

] COLLABORATORS
TITLE :
Sourcecode: Examplei.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Examplel.c iii

Contents

1 Sourcecode: Examplel.c 1
1.1 Examplel.c o e e e 1

Sourcecode: Examplel.c

Chapter 1

Sourcecode: Examplel.c

1.1 Examplel.c

/***k*k~k*******k‘k*k~k******~k*k‘k~k********k***k*k*************‘k*‘k******/

/ * */
/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC) =/
J*x —mmm e e */
/ * */
/* Manual: AmigaDOS Amiga C Club */
/* Chapter: Parsing Command Line Tulevagen 22 */
/+ File: Examplel.c 181 41 LIDINGO */
/+ Author: Anders Bjerin SWEDEN */
/* Date: 93-03-06 */
/* Version: 1.0 */
/ * */
/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/ * x/
/* Registered members may use this program freely in their =/
/ * own commercial/noncommercial programs/articles. */
/ * */

/***/

/* This example demonstrates how to parse the command line. =/
/+ Since this is the first example it is relative simple. */
/* The program expects one argument. If no argument is given =/
/+ will the parse function fail (uses the "/A" - "Always */
/* required" option), and if more than one argument is give «/
/x it will also fail (the "/M" - "Multiple argument" option =/
/* is not set). */

/+ Include the dos library definitions: =/
#include <dos/dos.h>

/+ Include information about the argument parsing routine: x/
#include <dos/rdargs.h>

/+* Now we include the necessary function prototype files: */
#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /* System functions... */

Sourcecode: Examplel.c

2/4

#include <stdio.h> /* Std functions [printf()...]
#include <stdlib.h> /* Std functions [exit ()...]
/+ Here is our simple command line template. This program expects
/+ one argument. If no argument is given will the parse function
/+ fail since we have set the option "/A" ("Always required"),

/+ and 1if more than one argument is given it will also fail since
/+ we have not set the "/M" ("Multiple argument") option.

#define MY_COMMAND_LINE_TEMPLATE "SoundFiles/A"

/+ Here is a valid command line:

/ * Examplel Bird.snd

/ %

/* Here are some incorrect command lines:

/ * Examplel The file name is required!

/ * Examplel Bird.snd River.snd Only one argument may be used!
/* Only one command template is used: =*/

#define NUMBER_COMMAND_TEMPLATES 1

/+* The command template numbers: (Where the result of each x/

/+ command template can be found in the "arg_array".) */
#define SOUNDFILE_TEMPLATE O

/* Set name and version number: */

UBYTE *version = "$VER: AmigaDOS/ParsingCommandLine/Examplel 1.0";
/+ Declare an external global library pointer to the Dos library:

extern struct DosLibrary xDOSBase;

/* Declared our own function(s): =x/

/% Our main function: =*/
int main(int argc, char *argv[]);

/* Main function: =/

int main(int argc, char xargv([])
{

/* Simple loop variable: x/

int loop;

/+ Pointer to a RDArgs structure
/+ be created for us when we use
struct RDArgs »*my_rdargs;

which will automatically =/
the RDArgs () function: */

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/

Sourcecode: Examplel.c

3/4

/ *

/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *

/ *
/ *
/ *
/ *
1f(
{

/

printf (

/

The ReadArgs () function needs an arrya of LONGs where x/
/+ the result of the command parsing will be placed. One =/
/+ LONG variable is needed for every command template. */
LONG arg_array[NUMBER_COMMAND_TEMPLATES];

Note! This "arg_array" must be cleared (all

values set to

zero) before we may use it with the ReadArgs () function.
If we declare this structure outside the main function

all values will automatically be cleared by

C, but if we,

as in this example, declare the array inside a function

we have to clear it manually. (If we do not

clear it we

can not examine the array and see if a field is set or

not.)

The built in command parsing routine was first «/
introduced in Release 2. V36 of the dos library =/
was however rather "buggy", and you should only =*/

use V37 or higher:
DOSBase—>dl_1lib.lib_Version < 37)

* Too old dos library! =/

x Exit with an error code: =/

exit (20);

*/

*/
*/
*/
*/
*/
*/
*/
*/

"This program needs Dos Library V37 or higher!\n");

*/
*/
*/
*/

/* We will now clear the "arg_array" (set all values to zero):

for(loop = 0; loop < NUMBER_COMMAND_TEMPLATES; loop++)
arg_array[loop] = 0;

/+ Parse the command line: (ReadArgs () will read the command

/+ line and with the help of the command line template set

/* the corresponding values in the "arg_array" which is used

/* to store the result of the command parsing. The function

/ *
/ *
/ *
/ *

my__

will return a pointer to a RDArgs structure
automatically been created for us, since we
one ourself. This structure must be removed
the FreeArgs () function before your program
rdargs =

ReadArgs (MY_COMMAND_LINE_TEMPLATE,

arg_array,
NULL
)i

which has

did not create
with help of
may terminate.

/* Have AmigaDOS successfully parsed our command line? =*/

if(
{
/

'my_rdargs)

*/

)

* The command line could not be parsed! The user probably =*/

/* forgot to enter an argument which is required.

*/

*/

*/
*/
*/

Sourcecode: Examplel.c

printf("Could not parse the command line!\n");

/+ See you later... x/
exit (21);

/+ The comand line has successfully been parsed! «*/
/* We can now examine the "arg_array": */

/* Print template 1, the file name, which is in this example the */

/+ only argument. Since the user must enter this argument, or */
/+ else the ReadArgs () function would fail, we actually do not */
/* have to check that there is something in the array. However, x/
/* it is easy to remove the "/A" option and forget to add a */
/* check later on, so we better always check that there is */
/+ something in the array before we use it (you can’t be too */
/+ careful) . x/
/* */

/* (If the user would not have entered an argument and the "/A" x/
/* option was not used, the LONG variable in the array would be =/
/+ NULL. If the user has entered an argument, which he must have x/
/+ done in this example since it is required, the LONG variable «/
/* in the arraw contains a pointer to a string with the argument =/

/* inside.) *x/
if(arg_array[SOUNDFILE_TEMPLATE])
printf("File name: %$s\n", arg_array[SOUNDFILE_TEMPLATE]);

/* Before our program terminates we have to free the data that */
/* have been allocated when we successfully called ReadArgs(): =/
FreeArgs (my_rdargs);

/+ Please note that any pointers in the "arg_array" which */
/* pointed to some data, for example strings, may not be */
/* used any more after you have called FreeArgs (). The data =*/
/* (strings etc...) have now been deallocated, and can not «/
/+ be accessed any more. */
/* "And they lived happily ever after..." =/

exit(0);

	Sourcecode: Example1.c
	Example1.c

